
Abstract. In order to explore the isotope e�ect including
the nuclear±electronic coupling and nuclear quantum
e�ects under the one-particle approximation, we apply
the dynamic extended molecular orbital (DEMO) meth-
od and energy component analysis to the hydrogen and
lithium hydride isotope molecules. Since the DEMO
method determines both electronic and nuclear wave
functions simultaneously by variationally optimizing all
parameters embedded in the basis sets, the virial theorem
is completely satis®ed and guarantees the relation of the
kinetic and potential energies. We con®rm the isotope
e�ect on internuclear distances, nuclear and electronic
wave functions, dipole moment, the polarizability, and
each energy component. In the case of isotopic species of
the hydrogen molecule, the total energy decreases from
the H2 to the T2 molecule due to the stabilization of the
nuclear±electronic potential component, as well as the
nuclear kinetic one. In the case of the lithium hydride
molecule, the energy lowering by replacing 6Li with 7Li
is calculated to be greater than that by replacing H with
D. This is mainly caused by the small destabilization of
electron±electron and nuclear±nuclear repulsion in 7LiH
compared to 6LiH, while the change in the repulsive
components from 6LiH to 6LiD increases.

Key words: Isotope e�ect ± Dynamic extended
molecular orbital method ± Energy component analysis ±
Nuclear wave function

1 Introduction

The problem imposed on quantum chemistry is to clarify
chemical concepts or chemical phenomena under the
quantum mechanical principle. The isotope e�ect, for
example, replacing a hydrogen atom with a deuterium

atom in molecules, is an interesting subject in chemis-
try, as well as in physics and in other interdisciplinary
®elds. Many isotope phenomena are observed experi-
mentally, such as, the red shift of the vibrational
frequency, the change in the chemical reaction rate [1],
the Ubbelohde e�ect [2], and a drastic change in the
phase±transition temperature of hydrogen-bonded fer-
roelectric materials [3]. Although there are many models
and experimental results presented for these phenomena
[4], such topics involving the isotope e�ect continue to
remain attractive in both theoretical and experimental
®elds. Since the chemical nature of hydrogen and
deuterium atoms is believed to be the same, the origin
of the isotope e�ect is only related to the di�erence in
their masses; however, it is not yet completely under-
stood how the di�erence in their masses a�ects the
electronic state and the molecular properties, and what
kind of reciprocal action takes place inside the system
when a hydrogen nucleus (proton) is replaced with a
deuterium nucleus (deuteron). In order to explore these
questions, we introduce a ®rst-principle's molecular
orbital (MO) treatment for both electrons and nuclei,
which we call the dynamic extended MO (DEMO)
method, and analyze their energy components (energy
component analysis). This newly developed DEMO
method [5, 6] can determine both nuclear and electronic
wave functions simultaneously, and expresses the iso-
tope e�ect including coupling e�ects between nuclei and
electrons directly.

In the conventional MO method only the electronic
state is described under the condition of ®xed nuclei, i.e,
the motion of electrons is evaluated in the ®eld of ®xed
nuclear charges. It is noted that this electronic Hamil-
tonian expresses only the electronic state, and no oper-
ator terms for the nuclear kinetic energy are taken into
account. In order to describe the isotope e�ect of nuclei,
one must solve the nuclear motion on the adiabatic
potential under the Born±Oppenheimer approximation
[7]. Although the nonadiabatic e�ects are very small and
the adiabatic approach su�ces for most chemical sys-
tems, the coupling e�ect between electronic and nuclearCorrespondence to: M. Tachikawa
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motions and the nonadiabatic e�ect may be very im-
portant in the case of a system containing the hydrogen
atom; therefore, the lightest nuclei should be treated as a
quantum wave for a better approximation.

The energy component analysis is often used in order
to clarify what happens inside the system. Any chemical
phenomenon involves a change in the total energy (E),
which involves changes in the potential energy (V ) and
the kinetic energy (T ). Analyzing these two energy
components in molecules is a useful tool for under-
standing the nature of chemical phenomena systemati-
cally. Pioneering studies on such energy component
analysis by Ruedenberg and coworkers [8] provided a
very clear interpretation of chemical bond formation. As
a matter of fact, a number of papers have been published
concerning the origin of Hund's rule [9], the aromaticity
[10], the conjugation e�ect of substituents [11], the
nature of the Jahn±Teller e�ect [12], and the origin of
steric hindrance [13] using this analysis. Moreover, the
analytical ®rst derivatives of the kinetic and potential
energies have been presented [14].

This approach, however, is confronted with a number
of di�culties. One of the di�culties is that the values of
T and V , which are not eigenvalues but expectation
values, depend strongly on the accuracy of the wave
function compared with E. Though the conventional
basis sets are suitable to improve E, there is no guarantee
for the improvement of each energy component. A large
number of basis sets involving polarization and di�use
functions are required in order to improve the energy
components with the conventional MO calculation [14].
By using the DEMO method, fortunately, two quantum
mechanically basic theorems, i.e., the virial theorem and
the Hellmann±Feynman theorem, are completely satis-
®ed because of the variational optimization of exponents
and centers in the basis set, respectively. The virial the-
orem guarantees the ratio of the kinetic and potential
energy components for all particles involved in any
molecular system [15]. It is noted that these theorems are
not always satis®ed in the conventional MO method.

In order to explore the isotope e�ect, we have applied
both the DEMO method and the energy component
analysis to the hydrogen molecule, lithium hydride, and
their isotopic species under the Hartree±Fock approxi-
mation. We describe the outline of the DEMO method
under the Hartree±Fock approximation in the next
section. Sects. 3 and 4 show the results of the energy
component analysis for hydrogen and lithium hydride
isotope molecules, and the energy component depen-
dence of each isotope is discussed. Concluding remarks
will be given in Sect. 5.

2 Method

We have proposed the DEMO method [5, 6] in order to
obtain both the electronic and nuclear wave functions
simultaneously and directly. The total Hamiltonian
including M kinds of particles is given by

Ĥtot �
XM

I

ĤI �
XM
I>J

V̂IJ ; �1�

where ĤI and V̂IJ refer to the contribution from the same
kind of particles, I , and that from di�erent kinds of
particles, I and J , respectively;
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In these equations, mI and ZI represent the mass and the
charge of Ith kind particle, and NI is the number of
particles of the Ith kind. In the DEMO method, all kinds
of particles can be treated as quantum waves. Under the
independent-particle (Hartree±Fock) approximation, the
total wave function is given by

jWi � jUAijUBi � � � jUM i ; �4�
where, jUIi is the antisymmetrized wavefunction for
fermion particles of the Ith kind. The total energy of
this system is given by
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where /i and /j are the MOs of the Ith and J th kinds of
particles, hI

ii is a one-particle integral, �/i/ij/i0/i0 � and�/i/i0 j/i/i0 � are Coulomb and exchange integrals
between the same kinds of particles, and �/i/ij/j/j�
is the Coulomb integral between di�erent kinds of
particles. Furthermore, the coe�cients nI

i are the occu-
pation numbers of /i, a and b are Coulomb and
exchange coupling constants, IMO is the number of
MOs in the Ith kind of particle. The position of the Ith
kind of particle is evaluated as the expectation value of
the coordinates,

R � hUI jR̂jUIi : �6�
The internuclear distance obtained by the DEMO
method corresponds to the expectation value (average
internuclear distance), which is longer than the equilib-
rium internuclear distance de®ned by the conventional
MO method because of the anharmonic nature of the
potential.

The electronic and nuclear MOs are expressed as
a linear combination of primitive Cartesian Gaussian±
type functions (GTFs),
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where CI
ri, fXr; Yr; Zrg, and ar are the linear combination

of GTF (LCGTF) coe�cients, the coordinates of the
GTF center, and the GTF exponent, respectively. IAO is
the number of GTFs in the Ith kind of particle. In the
conventional LCGTF-MO calculation, only LCGTF
coe�cients are determined with the variational theorem
by ®xing the other parameters; however, the exponents
for nuclear GTFs have not yet been determined by
optimization. To our knowledge, no report exists for the
analytical optimization of both GTF exponents and
centers for many-electron molecular systems, though the
optimization for one-electron systems [16], the optimi-
zation of only GTF exponents [17], and the optimization
of only GTF centers [18] have been reported. In our
approach, we adopt the fully variational treatment for
molecular orbitals [19], where all parameters, LCGTF
coe�cients, GTF exponents, and their centers (denoted
as X) are optimized for both electronic and nuclear
GTFs. Since the GTF exponents and centers are
mutually dependent, nonlinear optimization must be
carried out. We have used the analytical gradient
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where eI
i is the orbital energy, @hI

rs=@X
I
X, @�rsjtu�=@XI

X,
and @SI

rs=@X
I
X are the derivatives of one-, two-particle,

and overlap integrals, respectively. The updated Hessian
matrix is constructed from the cumulative gradients
by using the Davidon, Fletcher, and Powell method
[20]. The convergence of optimization is judged when
the maximum value and the root mean square of
gradients become less than 1� 10ÿ7 and 5� 10ÿ8,
respectively. In this calculation, all GTF centers are
placed and optimized along the x-axis, so that both
molecular translational and rotational energies are
excluded from the nuclear kinetic energy.

3 Results and discussion of hydrogen molecules

We have applied the DEMOmethod within the Hartree±
Fock approximation to the hydrogen molecular systems
by including the coupling e�ect between nuclei and
electrons. While hydrogen nuclei are treated as +1 point
charges in the conventional MO calculation, we have

employed GTFs for a proton basis set in addition to the
electron basis set in the DEMO method. The di�erences
for proton, deuteron, and triton appears as the masses in
the kinetic energy operators, whose values are 1836.59,
3669.48, and 5496.92 a.u., respectively [21]. Since the
exchange e�ect among the same kind of nucleus is very
small, the nuclear exchange terms in Eq. (5) are not
taken into account in the present calculation. This
approximation corresponds to di�erent spins for the
same kind of nucleus, i.e. the p-hydrogen molecule. All
GTFs are placed along the x-axis, with the origin at R=2.

3.1 Basis-set dependence of H2

The schematic description of the electronic and nuclear
densities with each GTF basis set optimized for H2, HD,
and D2 molecules is illustrated in Fig. 1. The three s and
a single s GTFs are employed for the electronic and
nuclear basis sets (hereafter denoted as [3s:1s]), and all
GTF exponents and centers are optimized simultaneous-
ly. Since the nuclear kinetic e�ect is directly taken into
account by this method, the H/D isotope e�ect is clearly
demonstrated in the internuclear distances (R), polar-
izabilities (axx), as well as in the exponent values of a
proton and a deuteron. The exponent of a deuteron
(about 33) is greater than that of a proton (about 22),
i.e, the nuclear wave function of a deuteron is more
localized than that of a proton. It is interesting that the
relaxation of the electronic state is clearly observed by
deuterization, i.e., the electronic density on D is also
more localized than that on H. Therefore, the HD
molecule has a nonvanishing value of the dipole moment
(lx), while H2 and D2 molecules do not. In order to
choose a suitable basis-set for further discussion, we
show the basis-set dependence for the H2 molecule with
the DEMO method.

In order to observe the basis-set dependence in the
DEMO method, we show the results of variationally
optimized GTFs with a number of basis sets for H2 in
Table 1. We have applied 3s, 4s, and 5s GTFs for the
electronic basis set, and 1s, 2s, 1s 1p, and 1s 1p 1d GTFs
for the protonic basis set. We have not used the polar-
ization (p-type) function for the electronic basis set be-
cause the electronic polarization e�ect is already taken
into account by optimizing the GTF centers [19]. In order
to check the role of the polarization functions for the
nuclear basis set, we have employed the calculation with
these protonic basis sets. Table 1 also shows the total
energy, EHF, relative energy, DE, virial ratio, and average
nuclear positions. It is noted that the virial ratio is always
very close to 2, irrespective of the number of basis set [15].

Since we have no restriction for the optimization of
both electronic and nuclear GTF centers, we obtain the
di�erent GTF centers for the electron and the nucleus.
All the centers of the electronic GTFs are calculated to
be inside the average nuclear positions, which means
that the electrons are gathered in the bonding region.
In the conventional MO method, such an electronic
polarization e�ect is expressed only with the LCGTF
coe�cients under the condition of ®xed GTF
exponents and centers.
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Table 1 shows that the internuclear distance calcu-
lated from the expectation value of the nuclear position
becomes a little shorter as the number of basis sets
increases in the DEMO method. For instance, the av-
erage internuclear distances calculated with the [3s:1s],
[4s:1s], and [5s:1s] basis sets are 0.7803, 0.7787, and
0.7786 AÊ , respectively. This is due to the increase in the
electronic and nuclear densities in the bonding region.
Accordingly the protonic GTF exponent becomes
greater as the number of electronic basis sets increases,
i.e, 21.95, 22.35, and 22.43 for the [3s:1s], [4s:1s], and
[5s:1s] basis sets.

In the [4s:1s] basis set, the center of a single protonic
s-type GTF is calculated to be at �0:3894 AÊ , which is lo-
cated outside all electronic GTF centers. This means that
the anharmonic e�ect is described even though we used
only a single s-type GTF for the nucleus. In the case of
the [4s:2s] basis set, the average internuclear distance is
0.7787 AÊ , which is almost identical to that with the
[4s:1s1p] basis set. In the case of the [4s:1s1p] basis set,
the protonic 1s and 1p GTFs have di�erent center po-
sitions at 0.3106 and 0.3428 AÊ , the MO coe�cients of
which are 0.9530 and 0.6484, respectively. The average
internuclear distance with the [4s:1s1p] basis set gives
0.7760 AÊ , i.e, the proton density increases in the outer

region of the two protonic GTF centers. The p-type
GTF is used to express the anharmonic e�ect more
¯exibly. The average internuclear distance with the
[4s:1s1p1d] basis set gives 0.7759 AÊ , which is almost
identical to that with [4s:1s1p].

The total energy decreases as the number of basis
functions increases, in accord with the fact that the ex-
panded variational space improves the wave function.
The improvement in the total energy from 3s to 4s
electronic GTFs is 1.40 kcal/mol, and that from 3s to 5s
is 1.56 kcal/mol. The improvement in the total energy
from 1s to 1s 1p nuclear GTFs is about 0.22 kcal/mol,
which is much larger than that from 1s to 2s or from 1s
1p to 1s 1p 1d GTFs (both about 0.01 kcal/mol). Con-
sequently, 1 s 1 p GTFs are required for the nuclear basis
set, and we have adopted the [4s:1s1p] basis set for fur-
ther discussion of hydrogen isotope molecules.

3.2 Hydrogen isotope molecules
with the [4s:1s1p] basis set

In order to discuss the isotope e�ect on the electronic
and nuclear wave functions more clearly, we have
employed the DEMO calculation with the [4s:1s1p]

Fig. 1. A schematic illustration
of electronic and nuclear densi-
ties, internuclear distances R,
dipole moments lx, and polar-
izabilities axx, with variationally
optimized [3s:1s] basis sets for
hydrogen molecules. The values
of a denote the Gaussian-type
function (GTF) exponents for
the nucleus
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basis set to various hydrogen isotope molecules, i.e., H2,
HD, D2, HT, DT, and T2. The variationally optimized
GTF centers, exponents, and the linear combination of
atomic orbitals coe�cients for these molecules are given
in Table 2. The Hartree±Fock energy, the relative energy
DE, the virial ratio, the dipole moment, the internuclear
distance R, and the energy components T and V are
summarized in Table 3. We have divided the total
kinetic energy (T ) into the nuclear (Tn) and electronic
(Te) kinetic energies, and the total potential energy (V ) is
also divided into the nuclear±electronic (Vne), electronic-
electronic (Vee), and nuclear±nuclear (Vnn) potential
parts. These relative energy components are also shown
in Table 3.

The virial ratios are calculated to be very close to 2
within an accuracy of 10ÿ7 for all cases, which con®rms
the reliability of the energy components, T and V , and so
we can discuss the isotope e�ect using these values. The
Hartree±Fock energy with the conventional MO method
is ÿ1:13217 hartree, which gains 99.9% of the total en-
ergy of the Hartree±Fock limitation of ÿ1:1336 hartree

[22]. The energy determined with the conventional MO
method (ÿ1:13217 hartree) is lower than that with the
DEMO method, because the nuclear kinetic energies are
not included in the conventional MOmethod. It is clearly
shown that the Hartree±Fock energy calculated with the
DEMO method decreases as the nuclear mass increases.
The energy change from H2 to T2 is calculated to be
ÿ19:92 kcal/mol. The origin of such an energy change
owing to the isotope e�ect is discussed in the following
subsections using the data in Tables 2 and 3 by applying
the energy component analysis.

3.2.1 Optimized basis sets

As shown in Table 2, all optimized electronic GTF
exponents for the DEMO method have smaller values
than those of the conventional MO treatment indicated
in the ®rst column. Since the nuclei are treated as a
quantum wave in the DEMO method, the electronic
wave function becomes more di�use compared to the
conventional electronic wave function.

Table 2. Variationally optimized [4s:1s1p] GTFs for various isotopes of a hydrogen molecule using the DEMO method

Point charge DEMO method

H2 H2 HD D2 HT DT T2

Electronic GTFs H H D H D T
Center (AÊ )

s 0.3649 0.3809 0.3774 0.3760 0.3761 0.3746 0.3738
s 0.3364 0.3472 0.3466 0.3435 0.3451 0.3452 0.3420
s 0.3196 0.3326 0.3225 0.3286 0.3205 0.3197 0.3268
s 0.2903 0.3023 0.0389 0.2987 0.0353 0.0398 0.2972

H D D T T T
s )0.3649 )0.3809 )0.3811 )0.3760 )0.3801 )0.3771 )0.3738
s )0.3364 )0.3472 )0.3692 )0.3435 )0.3694 )0.3660 )0.3420
s )0.3196 )0.3326 )0.3266 )0.3286 )0.3268 )0.3230 )0.3268
s )0.2903 )0.3023 )0.3660 )0.2987 )0.3643 )0.3625 )0.2972

Exponent H H D H D T
s 16.3515 (0.0125) 7.2591 (0.0198) 7.0104 (0.0209) 8.5068 (0.0183) 7.0438 (0.0208) 8.1476 (0.0196) 9.2397 (0.0175)
s 2.4516 (0.0876) 1.5220 (0.1147) 1.4328 (0.1241) 1.6799 (0.1093) 1.4407 (0.1236) 1.5641 (0.1195) 1.7675 (0.1064)
s 0.5599 (0.2702) 0.4086 (0.2761) 0.3719 (0.3023) 0.4375 (0.2754) 0.3744 (0.3016) 0.3943 (0.3030) 0.4529 (0.2750)
s 0.1494 (0.2430) 0.1227 (0.1989) 0.1078 (0.3132) 0.1284 (0.2076) 0.1086 (0.3161) 0.1118 (0.3274) 0.1313 (0.2122)

H H D T T T
s 16.3515 (0.0125) 7.2591 (0.0198) 14.3637 (0.0075) 8.5068 (0.0183) 16.0430 (0.0071) 16.4410 (0.0068) 9.2397 (0.0175)
s 2.4516 (0.0876) 1.5220 (0.1147) 3.3554 (0.0441) 1.6799 (0.1093) 3.5907 (0.0425) 3.6952 (0.0412) 1.7675 (0.1064)
s 0.5599 (0.2702) 0.4086 (0.2761) 0.9717 (0.1539) 0.4375 (0.2754) 1.0100 (0.1526) 1.0386 (0.1493) 0.4529 (0.2750)
s 0.1494 (0.2430) 0.1227 (0.1989) 0.3103 (0.2527) 0.1284 (0.2076) 0.3174 (0.2549) 0.3263 (0.2533) 0.1313 (0.2122)

Nuclear GTFs H H D H D T
Center (AÊ )

s 0.3106 0.3070 0.3192 0.3054 0.3175 0.3236
p 0.3428 0.3394 0.3454 0.3379 0.3438 0.3469

Exponent
s 20.6763 (0.9530) 20.6709 (0.9520) 30.8404 (0.9557) 20.6882 (0.9518) 30.8113 (0.9551) 38.7321 (0.9570)
p 20.9012 (0.6484) 20.9126 (0.6532) 31.1093 (0.6413) 20.9337 (0.6542) 31.0951 (0.6436) 39.0342 (0.6374)

Nucleus H D D T T T
Center (AÊ )

s )0.3106 )0.4090 )0.3192 )0.3288 )0.3255 )0.3236
p )0.3428 )0.4100 )0.3454 )0.3517 )0.3485 )0.3469

Exponent
s 20.6763 (0.9530) 31.1105 (0.9615) 30.8404 (0.9557) 38.9393 (0.9582) 38.9964 (0.9576) 38.7321 (0.9570)
p 20.9012 (0.6484) 34.8151 (0.2651) 31.1093 (0.6413) 39.2383 (0.6291) 39.3079 (0.6328) 39.0342 (0.6374)

Linear combination of GTF coe�cients are shown in parentheses
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The homonuclear molecules have the same exponent
values for the nuclear (1s; 1p) GTFs, which are calcu-
lated to be (20.7, 20.9), (30.8, 31.1), and (38.7, 39.0) for
H2, D2, and T2, respectively. The optimized electronic
GTF exponents and centers are also obtained symmet-
rically for these molecules. As the nuclear mass increases
from H2 to T2, the electronic GTF exponents become
large, as do the nuclear ones.

On the other hand, the heteronuclear molecules,
HD, HT, and DT, have di�erent exponents and their
GTF centers result in nonsymmetry. When considering
the LCGTF coe�cients in Table 2, the most di�use
electronic GTF (fourth s) is dominant in describing
the electronic MO. It is interesting that the position of
this di�use GTF moves from the light nucleus to the
heavy one in the case of heteronuclear molecules, and
their centers locate very close to the middle of the
bond: 0.0389, 0.0353, and 0.0398 AÊ in HD, HT, and
DT, respectively. This means that such a di�use GTF
plays the role of the polarization function as well and
gives the polarized ionic structure of Hd�Ddÿ, Hd�Tdÿ,
and Dd�Tdÿ. As a result, these molecules have the
dipole moment values shown in Table 3. The calcu-
lated dipole moment of HD is 0.0099 a.u., which is,
however, greater than the experimental value of
0.00023 a.u. [23].

3.2.2 Internuclear distance

As seen in Table 3, the equilibrium internuclear distance
of H2 is calculated to be 0.7339 AÊ with the conventional
MO method, which is the bottom of the well in the

potential-energy curve. This internuclear distance is
shorter than the experimental equilibrium one of
0.7414 AÊ [23] because of the lack of electron correlation
in the scheme of the Hartree±Fock method.

Noting that the internuclear distance, R, obtained by
the DEMO method corresponds to the expectation value
of the quantum nucleus (average internuclear distance),
we observe a clear di�erence in the internuclear distances
among these hydrogen molecules with the DEMO
method. The calculated average internuclear distances
from the DEMO method are 0.7760, 0.7699, 0.7638,
0.7671, 0.7610, and 0.7584 AÊ for H2, HD, D2, HT, DT,
and T2, respectively. A comparison of the internuclear
distances between the DEMO and conventional MO
treatments indicates the following relationship,

R(Conventional MO) < RT2
< RD2

< RH2
: �9�

Considering the anharmonic nature of the potential,
the average internuclear distance becomes larger as the
energy of the zero-point vibrational level increases. In
fact, the experimental average internuclear distances are
0.7511, 0.7498, 0.7484, 0.7493, 0.7476, and 0.7469 AÊ

for H2, HD, D2, HT, DT, and T2, respectively. This
trend agrees with the result shown in Eq. (9). Since the
nuclear kinetic e�ect is directly taken into account in
the DEMO method, we can clearly demonstrate the H/
D/T isotope e�ect in the internuclear distance of a
hydrogen molecule. Although the calculated internu-
clear distances are longer than the experimental one, we
would expect an improvement using many-body cor-
rections, which are not treated in the present DEMO
calculation.

Table 3. Energy components analysis for a hydrogen molecule and its isotopes using the [4s:1s1p] basis set with the DEMO method

Point charge DEMO method

H2 H2 HD D2 HT DT T2

EHF(hartree) )1.132175 )1.052371 )1.063356 )1.074137 )1.068382 )1.079279 )1.084123
DE (kcal/mol) 0.00 )6.89 )13.66 )10.85 )16.88 )19.92
(V/T) + 2 )3.50E-08 3.50E-09 )3.00E-10 )4.95E-08 )4.30E-09 1.34E-08 2.87E-08
Dipole (a.u.) 0.0000 0.0000 0.0099 0.0000 0.0144 0.0041 0.0000

R (AÊ ) 0.7339 0.7760 0.7699 0.7638 0.7671 0.7610 0.7584
Exptl. Re(AÊ )

a 0.7414

Exptl. R (AÊ )a 0.7511 0.7498 0.7484 0.7493 0.7476 0.7469

T (hartree) 1.132175 1.052371 1.063356 1.074137 1.068382 1.079279 1.084123
DT (kcal/mol) 0.00 6.89 13.66 10.05 16.88 19.92
Te (hartree) 1.132175 1.016078 1.031640 1.047167 1.038866 1.054445 1.061558
DTe (kcal/mol) 0.00 9.77 19.51 14.30 24.08 28.54
Tn (hartree) 0.018147 (H) 0.01874 (H) 0.013485 (D) 0.018197 (H) 0.013486 (D) 0.011282 (T)
DTn (kcal/mol) 0.00 0.02 )2.93 0.03 )2.92 )4.31
Tn (hartree) 0.018147 (H) 0.013542 (D) 0.013485 (D) 0.011320 (T) 0.011348 (T) 0.011282 (T)
DTn (kcal/mol) 0.00 )2.89 )2.93 )4.28 )4.27 )4.31

V (hartree) )2.264349 )2.104742 )2.126712 )2.148274 )2.136764 )2.158558 )2.168246
DV (kcal/mol) 0.00 )13.79 )27.32 )20.09 )33.77 )39.85
Vne (hartree) )3.646716 )3.417512 )3.449165 )3.480520 )3.463680 )3.495293 )3.509316
DVne (kcal/mol) 0.00 )19.86 )39.54 )28.97 )48.81 )57.61
Vee (hartree) 0.661348 0.632206 0.686230 0.640370 0.638096 0.642182 0.644064
DVee (kcal/mol) 0.00 2.52 5.12 3.70 6.26 7.44
Vnn (hartree) 0.721019 0.680564 0.686224 0.691876 0.688821 0.694553 0.697006
DVnn (kcal/mol) 0.00 3.55 7.10 5.18 8.78 10.32

aRef. [23]
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3.2.3 Kinetic energy

The total kinetic energy, T , becomes larger as the nuclear
mass increases. As shown in Table 3, the kinetic energy
change is +19.92 kcal/mol from H2 to T2. In order to
discuss the origin of this energy change, we divide the
total kinetic energy into two components, Tn and Te.

The nuclear kinetic energy, Tn, decreases as the nu-
clear mass increases, i.e., DTn is ÿ8:62 kcal/mol from H2

to T2. This is caused by the increment of the nuclear
mass, which a�ects the localization of the nuclear wave
as seen in the large exponent value of the nuclear GTF
for T2. Since all parameters are optimized in the present
DEMO calculation, both the translational and rota-
tional energies are excluded, and only the vibrational
energy is included in the nuclear kinetic energy; however,
the nuclear kinetic energy of H2 is calculated to be
0.0362 hartree = 7940 cmÿ1, which is much greater than
the experimental zero-point energy (2170 cmÿ1) due to
the lack of many-body e�ects such as electronic corre-
lation and electronic-nuclear correlation.

On the other hand, the electronic kinetic energy, Te,
becomes larger as the nuclear mass increases. The
change in the electronic kinetic energy, DTe, is
28.54 kcal/mol from H2 to T2. Seeing the optimized
electronic GTF centers and exponents in Table 2, the
GTF centers move slightly toward the inside and their
exponents become greater as the nuclear mass increases.
As shown in Sect. 3.2.2, the internuclear distance of the
hydrogen molecule becomes shorter as the nuclear mass
increases. This change in the internuclear distance causes
the deformation of the electron distribution, and so the
electron density between the hydrogen nuclei increases.
The region of electron movement becomes restricted due
to the shortening of the internuclear distance and the
increase in the electron density. Accordingly the increase
in Te turns out to be much larger than the decrease in Tn

as the nuclear mass increases.

3.2.4 Potential energy

The total potential energy, V , decreases as the nuclear
mass increases as shown in Table 3. DV is ÿ39:85 kcal/
mol from H2 to T2. Of course this value is exactly twice
ÿDT in this calculation. The large energy lowering of the
nuclear-electronic potential energy, DVne � ÿ57:61 kcal/
mol, is observed when changing from H2 to T2. This is
caused by the increase in the overlap between the nuclear
and electronic wave functions for a T2 molecule, because
the internuclear distance of T2 is shorter than that of H2.
Note that DVne between H2 and T2 of ÿ57:61 kcal/mol
is about 7 times larger than DTn of ÿ8:32 kcal/mol.
Consequently, DVne is the dominant factor for the total
energy change, DE, in the DEMO calculation within the
Hartree±Fock approximation.

We also show the repulsive components between
electrons (Vee) and between nuclei (Vnn) in Table 3. These
repulsive components with the DEMO method are
smaller than those with the conventional MO method.
Since the nucleus is described by wave functions which
have a certain distribution in the present method, the
electronic wave function becomes more di�use than that
with the conventional MO method, and gives less

repulsive electronic energy. Since the internuclear dis-
tance with the DEMO method is longer than that with
the conventional MO method, the nuclear repulsion
energy obtained with the DEMO method is smaller than
that obtained with the conventional MO method. The
stabilization of V arises from the large attractive con-
tribution of Vne compared with Vee � Vnn in the region of
chemical bonding. The change in repulsion among
electrons (DVee) and that between nuclei (DVnn) are cal-
culated to be 7.44 and 10.32 kcal/mol from H2 to T2,
respectively, due to the shorter internuclear distance for
T2.

Consequently we have clearly con®rmed the H/D/T
isotope e�ect on internuclear distance, nuclear and
electronic wave functions, and each energy component
for the DEMO method within the Hartree±Fock ap-
proximation. We found that the dominant factor for the
total energy stabilization from H2 to T2 is caused by the
di�erence in the electronic±nuclear potential compo-
nents, and the secondary factor is due to the di�erence in
the nuclear kinetic energy. The changes in the electronic
kinetic, electronic±electronic potential, and nuclear±
nuclear potential components behave in the opposite
direction to the change in the total energies.

4 Results and discussion of lithium hydride molecules

We have also applied the DEMO method to the various
isotopes of lithium hydride. We have optimized the
GTFs of the nuclear basis set for the hydrogen and
lithium nuclei, as well as the GTFs of the electronic basis
set in the DEMO method, while lithium and hydrogen
nuclei are treated as +3 and +1 point charges in the
conventional MO calculation. We have employed elec-
tronic 4s GTFs and nuclear 1s 1p GTFs for both the
lithium and the hydrogen atoms. We have taken the
masses of the 6Li and 7Li nuclei to be 10958.90 and
12782.45 a.u., respectively [21]. All GTFs are placed
along the x-axis, and all parameters are optimized. We
have set the origin to the 1s nuclear GTF center for the
lithium atom after optimization.

4.1 Optimized basis sets

The variationally optimized GTF centers and exponents
for 6LiH, 6LiD, 6LiT, 7LiH, 7LiD, and 7LiT are shown
in Table 4. We have adopted the electronic 4s GTFs for
both the lithium and the hydrogen atoms as the initial
electronic GTF condition. After the fully variational
optimization, the centers of the ®rst ®ve electronic GTFs
are almost 0.00 AÊ , which is the position of the lithium
nuclear 1s GTF, while the sixth electronic GTF is
located at the hydrogen nucleus. The last two electronic
GTFs become di�use and move a little toward the
lithium nucleus. As a result, the minimum energy is
obtained with 5s electronic GTFs for lithium and 3s ones
for hydrogen atoms, rather than 4s electronic GTFs for
each atom. This fact is con®rmed by using the various
kinds of initial conditions of the GTF centers and
exponents. The result demonstrates that the balance of

36



the GTFs in the basis set is a very signi®cant problem for
molecular systems. It is noted that our Hartree±Fock
energy (ÿ7:961713 hartree) with only 8s GTFs gains
99.7 % of the total energy of near the Hartree±Fock
limitation (ÿ7:987352 hartree) with the (15s11p5d/
12s9p3d) [11s11p5d/9s9p3d] basis set [24].

When we used 1s 1p GTFs for the lithium nucleus,
the LCGTF coe�cient contribution of the nuclear 1p
GTF essentially vanishes. This is why Table 4 shows
only 1s GTF for the lithium nucleus. The 1s GTF
exponent values for the 6Li and the 7Li nuclei are
calculated to be 578.8 and 628.4, respectively. These
values exhibit the extremely localized nuclear wave as
compared with the hydrogen nucleus. This drastic in-
crement of the exponent values is caused by not only
the change in mass when changing from hydrogen to
lithium nuclei but also by the change in charge from
+1 to +3. It is regarded that the lithium nucleus can
be approximated to a pure point charge; therefore the
lithium nucleus is expressed with only a single s GTF
under our approximation, and the LCGTF coe�cient
of the nuclear p GTF vanishes. The hydrogen nuclear
GTFs in LiH are calculated to be more di�use than

those in hydrogen molecules shown as the exponent
values in Tables 2 and 4. The reason is considered to
be due to the change in the electronic densities on
the hydrogen nuclei between H2 and LiH. In fact the
number of electronic GTFs around the hydrogen
nucleus in lithium hydride decreases compared with
that in H2.

The change in the internuclear distance from 6LiH to
6LiT is 0.011 AÊ , which is almost identical to the case
when changing from H2 to HT. On the other hand, the
6Li/7Li isotope e�ect for the internuclear distance is
negligibly small.

4.2 Energy component analysis

The Hartree±Fock energy, the relative energy, DE, the
virial ratio, the dipole moment, the internuclear distance,
R, and the energy components, T (Te and Tn) and V (Vne,
Vee, and Vnn), for each isotope species are summarized in
Table 5. The energy lowering of the total energy from
6LiH to 7LiT is calculated to be 15.77 kcal/mol, which is
shown as DE in Table 5. The energy change due to the

Table 4. Variationally optimized [4s:1s1p] GTFs for variuos isotopes for a lithium hydride molecule using the DEMO method

Point charge DEMO method

LiH 6LiH 6LiD 6LiT 7LiH 7LiD 7LiT

Electronic GTFs 6Li 6Li 6Li 7Li 7Li 7Li
Center (AÊ )

s )0.084 )0.097 )0.097 )0.097 )0.096 )0.096 )0.096
s 0.000 0.000 0.000 0.000 0.000 0.000 0.000
s 0.000 0.000 0.000 0.000 0.000 0.000 0.000
s 0.000 )0.001 )0.001 )0.001 )0.001 )0.001 )0.001
s )0.014 )0.015 )0.015 )0.016 )0.015 )0.015 )0.015

H D T H D T
s 1.625 1.654 1.646 1.642 1.653 1.645 1.642
s 1.509 1.493 1.496 1.497 1.493 1.496 1.497
s 1.280 1.279 1.280 1.280 1.278 1.279 1.280

Exponent 6Li 6Li 6Li 7Li 7Li 7Li
s 222.061 187.999 188.083 188.018 190.651 188.662 190.206
s 27.652 71.277 71.264 71.256 72.655 72.642 72.634
s 14.663 12.246 12.243 12.241 12.385 12.382 12.381
s 3.216 2.866 2.865 2.865 2.887 2.886 2.886
s 0.8154 0.7601 0.7600 0.7600 0.7636 0.7635 0.7635

H D T H D T
s 2.564 1.865 2.011 2.086 1.866 2.011 2.086
s 0.3692 0.2926 0.3085 0.3168 0.2926 0.3086 0.3168
s 0.08049 0.06945 0.07194 0.07320 0.06945 0.07194 0.07320

Nuclear GFTs 6Li 6Li 6Li 7Li 7Li 7Li
Center (AÊ )

s 0.000 0.000 0.000 0.000 0.000 0.000

Exponent
s 578.785 578.795 578.799 628.419 628.429 628.434

Nuclear GTFs H D T H D T
Center (AÊ )

s 1.663 1.686 1.604 1.662 1.685 1.603
p 1.674 1.667 1.619 1.673 1.667 1.618

Exponent
s 18.483 27.130 33.802 18.484 27.131 33.802
p 20.220 27.365 33.772 20.222 27.366 38.772
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isotope e�ect between H/D and 6Li/7Li can be seen as the
DEs between 6LiH and 6LiD (H/D) and between 6LiH
and 7LiH (6Li/7Li), being ÿ5:77 and ÿ7:38 kcal/mol,
respectively. In order to analyze the fact that the isotope
e�ect on the total energy change for 6Li/7Li is greater
than that for H/D, we have calculated the di�erence
of each energy component change between 6LiH/6LiD
(H/D) and 6LiH/7LiH (6Li/7Li).

The total kinetic energy changes, DT , of 6LiH/6LiD
and 6LiH/7LiH are 5.77 and 7.38 kcal/mol, respective-
ly, and these values have exactly the opposite sign to the
total energy changes, DE, because of the virial theorem.
The nuclear kinetic energy changes, DTn of 6LiH/6LiD
(H/D) and 6LiH/7LiH (6Li/7Li) are ÿ2:58 and
ÿ3:44 kcal/mol, respectively. These changes show the
same behavior as the total energy change, DE. Al-
though the mass ratio between D and H is greater than
that between 7Li and 6Li, the nuclear kinetic energy
change of 6Li/7Li is larger than that for the H/D isotope
e�ect. This arises from the di�erence in the charges
between the lithium and the hydrogen nuclei. In the
DEMO calculation, the nuclear MO is determined from
the e�ective one-particle potential, as well as from the
nuclear kinetic terms; therefore, the charge di�erence
between the lithium and hydrogen nuclei a�ects the
nuclear kinetic energy through the mean ®eld from
electrons and nuclei. Indeed, as shown in Sect. 4.1, the
exponent of the lithium nuclear GTF becomes much
greater than the hydrogen nuclear exponent, and this is
not only due to the mass di�erence, but also to
the charge di�erence between the hydrogen and the
lithium nuclei.

On the other hand, the electronic kinetic energy
changes, DTe, of

6LiH/6LiD (H/D) and 6LiH/7LiH (6Li/
7Li) are 8.34 and 10.82 kcal/mol, respectively. This
means that the electron movement is more restricted
from 6Li to 7Li than from H to D. This result is, in fact,
observed in the optimized values of the electronic GTF
exponents, where the change in the electronic GTF
exponent between 6LiH/7LiH (6Li/7Li) is greater than
that between 6LiH/6LiD (H/D).

The total potential energy changes, DV of 6LiH/6LiD
and 6LiH/7LiH are ÿ11:53 and ÿ14:77 kcal/mol,
respectively. The nuclear±electronic potential change,
DVne, the electronic±electronic potential change, DVee,
and the nuclear±nuclear potential change, DVnn for
6LiH/6LiD are ÿ19:83, 5.38, and 2.92 kcal/mol, respec-
tively. On the other hand, DVne, DVee, and DVnn for

6LiH/
7LiH are ÿ16:04, 1.17, and 0.10 kcal/mol. It is noted
that DVne for 6LiH/6LiD (H/D) of ÿ19:83 kcal/mol is
larger than that for 6LiH/7LiH (6Li/7Li) of ÿ16:04 kcal/
mol. This is the reverse behavior compared to DE. In
contrast the large DVee (5.38 kcal/mol) and the large
DVnn (2.92 kcal/mol) for 6LiH/6LiD show that the in-
crease in the repulsive forces for H/D substitution is
much larger than those for 6LiH/7LiH, (DVee � 1:17 and
DVnn � 0:10 kcal/mol). The repulsion changes, DVee and
DVnn of 6Li/7Li turn out to be small compared to those
of H/D, since these three energy components, DVne, DVee,
and DVnn, are directly related to the internuclear distance
between lithium and hydrogen.

Consequently we found that the total energy change
between 6Li/7Li is greater than that between H/D, since
DVee and DVnn of 6Li/7Li are smaller than those of H/D.

Table 5. Energy components analysis for lithium hydride and its isotopes using the [4s:1s1p] basis set with the DEMO method

Point charge DEMO method

LiH 6LiH 6LiD 6LiT 7LiH 7LiD 7LiT

EHR(hartree) )7.961713 )7.763992 )7.773181 )7.777356 )7.775759 )7.784949 )7.789123
DE (kcal/mol) 0.00 )5.77 )8.39 )7.38 )13.15 )15.77
(V/T) + 2 )1.52E-07 1.00E-09 )1.10E-09 )1.30E-08 )2.01E-08 2.99E-08 6.60E-09

Dipole (a.u.) 2.389 2.390 2.394 2.395 2.389 2.392 2.394
R (AÊ )a 1.623 1.651 1.643 1.640 1.651 1.643 1.639

T (hartree) 7.961714 7.763992 7.773181 7.777356 7.775760 7.784949 7.789123
DT (kcal/mol) 0.00 5.77 8.39 7.38 13.15 15.77
Te (hartree) 7.961714 7.669351 7.682647 7.688732 7.686595 7.699891 7.705977
DTe (kcal/mol) 0.00 8.34 12.16 10.82 19.16 22.98
Tn (hartree) 0.079221 (6Li) 0.079223 (6Li) 0.079223 (6Li) 0.073744 (7Li) 0.073745 (7Li) 0.073746 (7Li)
DTn (kcal/mol) 0.00 0.00 0.00 )3.44 )3.44 )3.44
Tn (hartree) 0.015420 (H) 0.011312 (D) 0.009400 (T) 0.015421 (H) 0.011312 (D) 0.009400 (T)
DTn (kcal/mol) 0.00 )2.58 )3.78 0.00 )2.58 )3.78

V (hartree) )15.923427 )15.527984 )15.546363 )15.554711 )15.551519 )15.569898 )15.578247
DV (kcal/mol) 0.00 )11.53 )16.77 )14.77 )26.30 )31.54
Vne (hartree) )20.354451 )19.888563 )19.920162 )19.934227 )19.914123 )19.945728 )19.959797
DVne (kcol/mol) 0.00 )19.83 )28.65 )16.04 )35.87 )44.70
Vee (hartree) 3.452981 3.399021 3.407591 3.411333 3.400879 3.409452 3.413196
DVee (kcal/mol) 0.00 5.38 7.73 1.17 6.55 8.90
Vnn (hartree) 0.978042 0.961559 0.966209 0.968183 0.961725 0.966378 0.968354
DVnn (kcal/mol) 0.00 2.92 4.16 0.10 3.02 4.26

a Experimental values of the equilibrium internuclear distances of 7LiH and 7LiD are 1.5957 and 1.5941 AÊ , while those of average
internuclear distances are 1.6074 and 1.6040 AÊ [23]
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5 Concluding remarks

The DEMO method can determine both the nuclear
and the electronic wave functions simultaneously. We
have applied the DEMO method to the hydrogen and
lithium hydride molecules, and have analyzed each
energy component within the Hartree±Fock approxi-
mation. The present study clearly con®rms the H/D/T
and 6Li/7Li isotope e�ect on internuclear distance,
nuclear and electronic wave functions, and each energy
component.

In the case of the hydrogen isotope molecule, the
nuclear±electronic potential component becomes more
stable as the nuclear mass increases from proton to tri-
ton, as does the nuclear kinetic component. This gives
the result that the total energy decreases as the nuclear
mass increases.

In the case of lithium hydride, the isotope e�ect on
the total energy change for 6Li/7Li is larger than that for
H/D. The reason is considered to be due to the elec-
tronic±electronic and nuclear±nuclear repulsion changes,
which are smaller for 6Li/7Li than for H/D, as well as the
nuclear kinetic component change.

It would be a more interesting subject to study the
many-body e�ect, such as the electronic±nuclear and
nuclear±nuclear correlation e�ects, as well as the elec-
tron±electron correlation, which is not treated in the
present Hartree±Fock DEMO calculation.
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